
# **CERTIFICATE**

**Certified Passive House Component** 

Component-ID 0794sp01 valid until 31st December 2016

Passive House Institute
Dr. Wolfgang Feist
64283 Darmstadt
Germany



Category: Spacer for low-E-glazing
Manufacturer: Thermoseal Group Limited,

Birmingham, United Kingdom

Product name: Thermobar

## This certificate was awarded based on the following criteria:

Depending on the climatic region, the spacer prevents high surface temperatures, which can cause mould. At least 3 out of the 7 reference frames fulfilled the spacer hygiene criteria for the relevant climatic region.

Hygiene  $f_{Rsi} \ge 0.80$ 

The specific resistance of the spacer's edges is greater than the climate-independent minimum requirement.

Efficiency  $R_E = 5.50 \,\mathrm{m}\,\mathrm{K/W} \geq 1.50 \,\mathrm{m}\,\mathrm{K/W}$ 

Type

All-Plastic

Height Box 2

6.50 mm

Thermal conductivity Box 2

 $0.14 \, \text{W/(m K)}$ 



#### Thermoseal Group Limited

Gavin Way, Nexus Point, Off Holford Drive, B6 7AF Birmingham, United Kingdom

I was marketing@thermosealgroup.com was http://www.thermosealgroup.com

#### **Description**

Body: Modified polypropylene with glass fibre, Film: Modified polyester.

Spacer height: 6.50 mm

Thermal conductivity: 0.14 W/(m K) (WA 17/1, ift Rosenheim)

Available spacer widths: 7.50, 9.50, 11.50, 13.50, 15.50, 17.50 and 19.50 mm

| Appropriate secondary seal | Specific edge resistance $R_E$ | Efficiency class |
|----------------------------|--------------------------------|------------------|
| Hotmelt Butyl              | 7.09 m K/W                     | phA+             |
| Polysulfide                | 5.52 m K/W                     | phA              |
| Silicone                   | 5.93 m K/W                     | phA              |
| Polyurethane               | 6.96 m K/W                     | phA+             |

### **Explanation**

Spacers are categorized into different efficiency classes based on the resistance of their edges  $R_E$ . A secondary polysulfide sealant is typically used, unless the spacer is not approved for polysulfide. A detailed report with the calculations is available from either the manufacturer or the Passive House Institute.

The Passive House Institute has defined global component requirements for seven climate regions. In principle, components that have been certified for climates with higher requirements can also be used in climates with lower requirements. This may be economically advantageous.

#### Use in PHPP:

If individually calculated values are not available then the thermal bridge loss coefficient specified in in this document can be used. In this case, the appropriate reference frame must be selected and a 10% safety margin should be applied.

Further information regarding certification is available on www.passivehouse.com and www.passipedia.org .

2/4 Thermobar

|                                  | Reference          | ce frames calcu    | ılated with Polysı | ılfide             |                           |
|----------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------------|
| Climate                          | Arctic√            | Cool               |                    | Warm temperate ✓   | Warm√                     |
| Glass                            | Quadruple          | Triple             | Triple             | Triple             | Double                    |
| Glass package                    | 4/12/3/12/3/12/4   | 6/18/2/18/6        | 6/16/6/16/6        | 6/16/6/16/6        | 6/16/6                    |
| Glass U-value                    | $0.35  W/(m^2  K)$ | $0.52  W/(m^2  K)$ | $0.70  W/(m^2  K)$ | $0.70  W/(m^2  K)$ | 1.20 W/(m <sup>2</sup> K) |
| Timber-aluminium integral frame  | 2.42               |                    | 2.72               | 2.27               |                           |
| $U_f$ [W/(m <sup>2</sup> K)]     | 0.48               | 0.62               | 0.73               | 0.87               | 1.03                      |
| $\Psi_g$ [W/(m K)] $f_{Rsi}$ [-] | 0.025<br>0.81 🗸    | 0.027<br>0.77 ✓    | 0.028<br>0.73 ✓    | 0.027<br>0.71 ✓    | 0.032<br>0.61 🗸           |
| Timber-aluminium                 |                    |                    |                    | [***- <u>-</u> -   |                           |
| $U_f$ [W/(m <sup>2</sup> K)]     | 0.54               | 0.57               | 0.75               | 0.97               | 1.19                      |
| $\Psi_g$ [W/(m K)]               | 0.026              | 0.028              | 0.028              | 0.028              | 0.034                     |
| f <sub>Rsi</sub> [-]             | 0.78               | 0.75 🗸             | 0.71 🧹             | 0.68               | 0.56 🗸                    |
| Timber                           |                    | ·                  |                    |                    |                           |
| $U_f$ [W/(m <sup>2</sup> K)]     | 0.51               | 0.53               | 0.78               | 0.86               | 0.99                      |
| $\Psi_g$ [W/(m K)]               | 0.023              | 0.026              | 0.027              | 0.027              | 0.032                     |
| f <sub>Rsi</sub> [-]             | 0.81 🧹             | 0.77 🗸             | 0.73 🧹             | 0.71 🧹             | 0.61 🗸                    |
| Vinyl                            |                    |                    |                    |                    |                           |
| $U_f$ [W/(m <sup>2</sup> K)]     | 0.70               | 0.75               | 0.82               | 1.02               | 1.16                      |
| $\Psi_g$ [W/(m K)]               | 0.027              | 0.029              | 0.030              | 0.032              | 0.037                     |
| f <sub>Rsi</sub> [-]             | 0.80               | 0.77 🗸             | 0.75 🧹             | 0.74 🗸             | 0.62 🗸                    |
| Aluminium                        |                    |                    |                    |                    |                           |
| $U_f$ [W/(m <sup>2</sup> K)]     | 0.60               | 0.61               | 0.71               | 0.73               | 1.17                      |
| $\Psi_g$ [W/(mK)]                | 0.027              | 0.030              | 0.031              | 0.031              | 0.039                     |
| f <sub>Rsi</sub> [-]             | 0.81 🗸             | 0.80               | 0.78 🧹             | 0.78 🧹             | 0.64 🗸                    |
| Curtain wall timber              |                    |                    |                    |                    | <b>1</b>                  |
| $U_f$ [W/(m <sup>2</sup> K)]     | 0.60               | 0.65               | 0.66               | 0.71               | 1.11                      |
| $\Psi_g$ [W/(m K)]               | 0.030              | 0.030              | 0.032              | 0.032              | 0.042                     |
| f <sub>Rsi</sub> [-]             | 0.80               | 0.78               | 0.75               | 0.75               | 0.62                      |
| Curtain wall aluminium           |                    |                    |                    | ***                |                           |
| $U_f$ [W/(m <sup>2</sup> K)]     | 0.67               | 0.73               | 0.75               | 0.79               | 1.33                      |
| $\Psi_g$ [W/(m K)] $f_{Rsi}$ [-] | 0.035<br>0.87 🗸    | 0.035<br>0.85 🗸    | 0.038<br>0.83 🗸    | 0.038<br>0.83 🗸    | 0.056<br>0.72 ✓           |
|                                  |                    |                    |                    |                    | -                         |

